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L I N K  TO  O R I G I N A L  A RT I C L E

The recent Review by Tovote et al. 
(Neuronal circuits for fear and anxiety. 
Nat. Rev. Neurosci. 16, 317–331 (2015))1 
provides a valuable summary of our current 
understanding from animal studies of the 
importance of distributed brain networks 
in fear and anxiety. Given the key role of 
limbic structures (such as the amygdala,  
the periaqueductal grey (PAG) and the  
hippocampus) and closely interlinked  
cerebral cortical areas (such as the  
prefrontal cortex), the Review focuses on 
how these CNS structures drive emotional 
behaviours, including freezing in response 
to fearful stimuli. Tovote et al. indicate 
that this list of structures is not exhaustive. 
Nonetheless, we would argue that the  
cerebellum is an important omission.

The cerebellum contains more than  
80% of all neurons in the human brain2  

and uses its extraordinary computational 
power to control most, if not all, aspects  
of behaviour. There is a substantial  
body of evidence that points to the cerebel-
lum as a crucial component of the neural 
matrix that subserves emotionally related 
behaviours (for reviews, see REFS 3,4). 
This evidence includes consistent findings 
from human imaging studies of increases 
in blood oxygen level-dependent signals 
or metabolic activity within the cerebel-
lum in response to painful or threatening 
stimuli5 and even during mental recall of 
personally charged episodes6. Anatomical 
and physiological mapping studies have 
shown that extensive interconnections exist 
between the cerebellum and important ele-
ments of the emotional behaviour network, 
including the PAG7, the amygdala8, the 
hippocampus8,9 and the prefrontal cortex10. 

Stimulation of the midline vermal region  
of the cerebellum, or its output, the fastigial 
nucleus, can elicit various complex patterns  
of defence-like behaviour, such as sham 
rage11. Moreover, both autonomic12 and 
fear-related conditioning13 have been 
shown to require the integrity of the 
cerebellar vermis.

In particular, Sacchetti et al.13 have 
shown in rats that rostral parts of the  
cerebellar vermis (lobules V and VI) are 
important sites of plasticity related to  
consolidation of conditioned fear memory 
(FIG. 1a). Similarly, lesion studies have 
shown that a more caudal region of the 
cerebellar vermis (lobule VIII), which has 
strong physiological connections with the 
PAG, is essential for the expression of both 
conditioned and unconditioned freezing7 
(FIG. 1b,c). A substantial body of evidence 
therefore indicates that the cerebellum, 
and particularly its vermal compartment, 
is crucially involved in both the memory 
and the expression of emotional behaviour. 
Accordingly, the cerebellum should be 
included in the distributed network of brain 
regions that are associated with fear (FIG. 2). 
Other studies have shown that the cerebel-
lum is involved in a range of additional 
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Figure 1 | The cerebellum and fear. a | A long lasting increase in excita-
tory transmission between parallel fibres and Purkinje cells occurs after 
fear learning in rats. Stimulation of parallel fibres at increasing strength 
results in an increased amplitude of the excitatory postsynaptic current 
(EPSC) evoked in Purkinje cells in vermal lobule V and lobule VI 24 hours 
after the training. In comparison with naive animals (circles; n = 17) or animals 
that received an unpaired conditioned stimulus (CS; squares; n = 23), those 
that received the CS and an unconditioned stimulus (US) in a paired  
manner exhibited increases in EPSC amplitude, resulting in conditioned 
fear behaviour (triangles; n = 17). b | Neurotoxin-induced lesions of the cere-
bellar vermis (lobule VIII) reduce fear-induced freezing behaviour in rats. 

Microinjections of the neurotoxin CTb–saporin (CTb–Sap; n = 12) into  
vermal lobule VIII results in a localized lesion of cerebellar cortical connec-
tions and causes a significant reduction in the duration of the freezing 
response (expressed as a percentage of total time) in comparison to sham-
treated rats (n = 10), during exposure to a conditioned auditory tone previ-
ously associated with an aversive footshock (***P < 0.001; Mann–Whitney 
test). c | Some of the CTb–Sap rats (n = 6) were also exposed to an uncondi-
tioned cat-odour stimulus. In comparison to sham-treated rats (n = 6), they 
displayed a significant reduction in duration of freezing response (*P < 0.05; 
Mann–Whitney test). Part a is adapted with permission from REF. 13, 
Elsevier. Parts b and c are adapted from REF. 7, Wiley.
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cognitive functions14. An important  
question for future investigation is whether 
the interconnectivity between the cerebel-
lum and the limbic system also contributes 
to the affective component of emotional 
behaviours.
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Figure 2 | The fear network. The cerebellum is a key node in the distributed network of brain regions 
involved in fear-related behaviour. BA, basal amygdala; CEl, lateral central amygdala; CEm, medial 
central amygdala; HYP, hypothalamus; IL, infralimbic cortex; ITC, intercalated; LA, lateral amygdala; 
PAG, periaqueductal grey; PL, prelimbic cortex; vHC, ventral hippocampus. Figure adapted from REF. 1, 
Nature Publishing Group.
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